Search results

Search for "catalytic oxidation" in Full Text gives 11 result(s) in Beilstein Journal of Nanotechnology.

New application of bimetallic Ag/Pt nanoplates in a colorimetric biosensor for specific detection of E. coli in water

  • Azam Bagheri Pebdeni,
  • Mohammad N. AL-Baiati and
  • Morteza Hosseini

Beilstein J. Nanotechnol. 2024, 15, 95–103, doi:10.3762/bjnano.15.9

Graphical Abstract
  • catalytic oxidation of TMB by H2O2 on a paper-based device. As a result, it is highly suitable for the generation of novel and portable biosensors [13]. The color shift produced by an enzyme-catalyzed substrate reaction is an appealing option for developing colorimetric-based biosensors to detect targets
PDF
Album
Supp Info
Full Research Paper
Published 17 Jan 2024

The influence of porosity on nanoparticle formation in hierarchical aluminophosphates

  • Matthew E. Potter,
  • Lauren N. Riley,
  • Alice E. Oakley,
  • Panashe M. Mhembere,
  • June Callison and
  • Robert Raja

Beilstein J. Nanotechnol. 2019, 10, 1952–1957, doi:10.3762/bjnano.10.191

Graphical Abstract
  • , but allows the system to maintain porosity after nanoparticle deposition. This will aid diffusion of reagents through the system, allowing continued access to the active sites in hierarchical systems, which offers significant potential in catalytic oxidation/reduction reactions. Keywords
  • their inherent porosity aiding nanoparticle reduction. Such materials have potential in catalytic oxidations/reductions, with Au/HP-SAPO-5 IW yielding a turn over number (TON) of 35 (Table S5, Supporting Information File 1) for the catalytic oxidation of toluene (preliminary findings). These materials
PDF
Album
Supp Info
Letter
Published 25 Sep 2019

Improved catalytic combustion of methane using CuO nanobelts with predominantly (001) surfaces

  • Qingquan Kong,
  • Yichun Yin,
  • Bing Xue,
  • Yonggang Jin,
  • Wei Feng,
  • Zhi-Gang Chen,
  • Shi Su and
  • Chenghua Sun

Beilstein J. Nanotechnol. 2018, 9, 2526–2532, doi:10.3762/bjnano.9.235

Graphical Abstract
  • adsorption and oxidation. Keywords: catalytic oxidation; copper oxide; density functional theory; methane; Introduction Methane (CH4), as the main component of natural gas, offers significant environmental advantages over conventional gasoline and diesel [1][2][3]. However, its thermal combustion is often
  • global warming effects, around 25 times greater than that of carbon dioxide (CO2). For a more efficient use of natural gas and to minimize the direct emission of CH4, the catalytic oxidation of CH4 at low temperature has been investigated extensively over the last decades [5][6][7][8]. Noble metals have
  • began with catalytic oxidation tests, starting from 150 °C up to the maximum testing temperature, Tmax = 850 °C. After the first cycle of the test (denoted as C1), the catalytic bed was cooled down from 850 to 150 °C followed by the second test cycle (C2). Figure 3a shows the C1-performance of the NP
PDF
Album
Supp Info
Full Research Paper
Published 24 Sep 2018

A review of carbon-based and non-carbon-based catalyst supports for the selective catalytic reduction of nitric oxide

  • Shahreen Binti Izwan Anthonysamy,
  • Syahidah Binti Afandi,
  • Mehrnoush Khavarian and
  • Abdul Rahman Bin Mohamed

Beilstein J. Nanotechnol. 2018, 9, 740–761, doi:10.3762/bjnano.9.68

Graphical Abstract
  • influenced by the function of support materials. In their study, SiO2 was synthesised using the sol–gel method. Zeng et al. [41] implemented the sol–gel technique to prepare CuO–TiO2 catalysts for the selective catalytic oxidation of NO. Based on the results, the CuO–TiO2 catalysts demonstrated higher
PDF
Review
Published 27 Feb 2018

BN/Ag hybrid nanomaterials with petal-like surfaces as catalysts and antibacterial agents

  • Konstantin L. Firestein,
  • Denis V. Leybo,
  • Alexander E. Steinman,
  • Andrey M. Kovalskii,
  • Andrei T. Matveev,
  • Anton M. Manakhov,
  • Irina V. Sukhorukova,
  • Pavel V. Slukin,
  • Nadezda K. Fursova,
  • Sergey G. Ignatov,
  • Dmitri V. Golberg and
  • Dmitry V. Shtansky

Beilstein J. Nanotechnol. 2018, 9, 250–261, doi:10.3762/bjnano.9.27

Graphical Abstract
  • catalytic oxidation of methanol for both types of BN/Ag hybrid nanomaterials are presented in Figure 5a. Quartz pellets (curve 1) and raw BN NPs (curve 2) were used as the reference samples. The UV BN/Ag HNMs demonstrated much better catalytic activity (curve 4) in comparison to hybrid nanomaterials
  • preliminary annealing in air at 600 °C for 1 h followed by in situ heating in the TEM column at (c) 100 °C and (d) 650 °C. The results of catalytic oxidation of methanol (a) and HRTEM image of Ag NP inside a BN/Ag NH produced via CVD (b). 1 – quartz pellets, 2 – raw BN NPs, 3 – BN/Ag HNMs produced by CVD
PDF
Album
Supp Info
Full Research Paper
Published 23 Jan 2018

Fabrication of CeO2–MOx (M = Cu, Co, Ni) composite yolk–shell nanospheres with enhanced catalytic properties for CO oxidation

  • Ling Liu,
  • Jingjing Shi,
  • Hongxia Cao,
  • Ruiyu Wang and
  • Ziwu Liu

Beilstein J. Nanotechnol. 2017, 8, 2425–2437, doi:10.3762/bjnano.8.241

Graphical Abstract
  • activities. For instance, ZnCo2O4@CeO2 core@shell spheres [14] and Co3O4@CeO2 core@shell cubes [26] with tunable CeO2 shell thickness were prepared by a facile self-assembly method and exhibited promising performance in the catalytic oxidation of CO. Consequently, a suitable choice of templates or cerium
  • is largely retained during the catalytic oxidation, suggesting an excellent structural stability. To further explore the durability of the CeO2–MOx catalyst, the CeO2–CuOx sample was employed as a typical example and a cycling test was performed. As shown in Figure 9c, the CeO2–CuOx sample still
PDF
Album
Full Research Paper
Published 16 Nov 2017

Low-temperature CO oxidation over Cu/Pt co-doped ZrO2 nanoparticles synthesized by solution combustion

  • Amit Singhania and
  • Shipra Mital Gupta

Beilstein J. Nanotechnol. 2017, 8, 1546–1552, doi:10.3762/bjnano.8.156

Graphical Abstract
  • gas hourly space velocity (GHSV) and initial CO concentration. Keywords: CO oxidation; copper; nanoparticles; platinum; solution combustion; zirconia; Introduction The catalytic oxidation of carbon monoxide (CO) is of potential interest in applications such as CO sensors, carbon dioxide (CO2) lasers
  • , cigarettes, proton-exchange membrane fuel cells, air purifiers, methanol production and water-gas shift reaction [1][2][3][4]. The catalytic oxidation of CO was revolutionized by Haruta et al. [5]. They worked on supported nanogold catalysts and found them to be highly active for CO oxidation. Till date
PDF
Album
Full Research Paper
Published 31 Jul 2017

Synthesis of graphene–transition metal oxide hybrid nanoparticles and their application in various fields

  • Arpita Jana,
  • Elke Scheer and
  • Sebastian Polarz

Beilstein J. Nanotechnol. 2017, 8, 688–714, doi:10.3762/bjnano.8.74

Graphical Abstract
  • decomposition of methylene blue (MB) [127], for the catalytic decomposition of aqueous organics [128], for carbon dioxide adsorption [129], for ORR [130], for enhancing electrochemical performance for supercapacitors [131][132][133], and for catalytic oxidation and adsorption of elementary mercury [134]. Bag et
PDF
Album
Review
Published 24 Mar 2017

Formation and shape-control of hierarchical cobalt nanostructures using quaternary ammonium salts in aqueous media

  • Ruchi Deshmukh,
  • Anurag Mehra and
  • Rochish Thaokar

Beilstein J. Nanotechnol. 2017, 8, 494–505, doi:10.3762/bjnano.8.53

Graphical Abstract
  • lattice arrangement in an anisotropic dendritic cobalt nanocrystal, via adsorption and chemical catalytic oxidation, increases the efficacy for sewage water treatment [12][13] compared to its spherical counterparts. In addition to the catalytic activity of cobalt, its magnetic characteristics are also
PDF
Album
Supp Info
Full Research Paper
Published 23 Feb 2017

Surface-site reactivity in small-molecule adsorption: A theoretical study of thiol binding on multi-coordinated gold clusters

  • Elvis C. M. Ting,
  • Tatiana Popa and
  • Irina Paci

Beilstein J. Nanotechnol. 2016, 7, 53–61, doi:10.3762/bjnano.7.6

Graphical Abstract
  • effects on the catalytic oxidation on Pt and Au nanoclusters, seeking to elucidate the experimentally observed dependence of catalytic activity on nanoparticle size and shape. A recent experimental study by Mostafa et al. [49] convincingly argued that the catalytic activity of Pt nanoparticles for the
PDF
Album
Full Research Paper
Published 18 Jan 2016

Photocatalytic antibacterial performance of TiO2 and Ag-doped TiO2 against S. aureus. P. aeruginosa and E. coli

  • Kiran Gupta,
  • R. P. Singh,
  • Ashutosh Pandey and
  • Anjana Pandey

Beilstein J. Nanotechnol. 2013, 4, 345–351, doi:10.3762/bjnano.4.40

Graphical Abstract
  • ]. The simplest photocatalytic mechanism of silver ions is that it may take part in catalytic oxidation reactions between oxygen molecules in the cell and hydrogen atoms of thiol groups, i.e., two thiol groups become covalently bonded to one another through disulfide bonds (R–S–S–R), which leads to
PDF
Album
Correction
Full Research Paper
Published 06 Jun 2013
Other Beilstein-Institut Open Science Activities